Mathematical Optimization and Economic Theory

· Classics in Applied Mathematics Libro 39 · SIAM
eBook
527
Páginas
Apto
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Mathematical Optimization and Economic Theory provides a self-contained introduction to and survey of mathematical programming and control techniques and their applications to static and dynamic problems in economics, respectively. It is distinctive in showing the unity of the various approaches to solving problems of constrained optimization that all stem back directly or indirectly to the method of Lagrange multipliers. In the 30 years since its initial publication, there have been many more applications of these mathematical techniques in economics, as well as some advances in the mathematics of programming and control. Nevertheless, the basic techniques remain the same today as when the book was originally published. Thus, it continues to be useful not only to its original audience of advanced undergraduate and graduate students in economics, but also to mathematicians and other researchers interested in learning about the applications of the mathematics of optimization to economics. The book covers in some depth both static programming problems and dynamic control problems of optimization and the techniques of their solution. It also clearly presents many applications of these techniques to economics, and it shows why optimization is important for economics. Audience: mathematicians and other researchers who are interested in learning about the applications of mathematical optimization in economics, as well as students at the advanced undergraduate and beginning graduate level. A basic knowledge of analysis and matrix algebra is recommended. Two appendices summarize the necessary mathematics.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.