Mathematical Methods for Hydrodynamic Limits

· Springer
E-kitab
196
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

Entropy inequalities, correlation functions, couplings between stochastic processes are powerful techniques which have been extensively used to give arigorous foundation to the theory of complex, many component systems and to its many applications in a variety of fields as physics, biology, population dynamics, economics, ... The purpose of the book is to make theseand other mathematical methods accessible to readers with a limited background in probability and physics by examining in detail a few models where the techniques emerge clearly, while extra difficulties arekept to a minimum. Lanford's method and its extension to the hierarchy of equations for the truncated correlation functions, the v-functions, are presented and applied to prove the validity of macroscopic equations forstochastic particle systems which are perturbations of the independent and of the symmetric simple exclusion processes. Entropy inequalities are discussed in the frame of the Guo-Papanicolaou-Varadhan technique and of theKipnis-Olla-Varadhan super exponential estimates, with reference to zero-range models. Discrete velocity Boltzmann equations, reaction diffusion equations and non linear parabolic equations are considered, as limits of particles models. Phase separation phenomena are discussed in the context of Glauber+Kawasaki evolutions and reaction diffusion equations. Although the emphasis is onthe mathematical aspects, the physical motivations are explained through theanalysis of the single models, without attempting, however to survey the entire subject of hydrodynamical limits.

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.