Mathematical Bridges

· ·
· Birkhäuser
3,0
1 avaliação
E-book
309
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics.

Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics.

Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bridges a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students desiring to hone and develop their mathematical skills or with an interest in mathematics competitions must have this book in their personal libraries.

Classificações e resenhas

3,0
1 avaliação

Sobre o autor

Titu Andreescu is an internationally acclaimed problem solving expert who has published more than 30 books in this area.
Cristinel Mortici is a Romanian mathematics professor who efficiently uses a problem base approach in his teaching.
Marian Tetiva is a Romanian high school teacher who strongly believes in the importance of meaningful problem solving in teaching and learning mathematics.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.