Mathematical Bridges

· ·
· Birkhäuser
3,0
1 рецензија
Е-книга
309
Страници
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics.

Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics.

Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bridges a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students desiring to hone and develop their mathematical skills or with an interest in mathematics competitions must have this book in their personal libraries.

Оцени и рецензии

3,0
1 рецензија

За авторот

Titu Andreescu is an internationally acclaimed problem solving expert who has published more than 30 books in this area.
Cristinel Mortici is a Romanian mathematics professor who efficiently uses a problem base approach in his teaching.
Marian Tetiva is a Romanian high school teacher who strongly believes in the importance of meaningful problem solving in teaching and learning mathematics.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.