Markov Processes: Characterization and Convergence

· John Wiley & Sons
電子書
552
評分和評論未經驗證  瞭解詳情

關於本電子書

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists.

"[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference."
-American Scientist

"There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings."
-Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts

"Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook."
-Journal of Statistical Physics

Markov Processes presents several different approaches to proving weak approximation theorems for Markov processes, emphasizing the interplay of methods of characterization and approximation. Martingale problems for general Markov processes are systematically developed for the first time in book form. Useful to the professional as a reference and suitable for the graduate student as a text, this volume features a table of the interdependencies among the theorems, an extensive bibliography, and end-of-chapter problems.

關於作者

STEWART N. ETHIER, PhD, is Professor of Mathematics at the University of Utah. He received his PhD in mathematics at the University of Wisconsin Madison.

THOMAS G. KURTZ, PhD, is Professor of Mathematics and Statistics at the University of Wisconsin Madison. He is a Book Review Editor for The Annals of Probability and the author of Approximation of Population Processes. Dr. Kurtz obtained his PhD in mathematics at Stanford University.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。