Markov Processes: Characterization and Convergence

· John Wiley & Sons
eBook
552
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists.

"[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference."
-American Scientist

"There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings."
-Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts

"Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook."
-Journal of Statistical Physics

Markov Processes presents several different approaches to proving weak approximation theorems for Markov processes, emphasizing the interplay of methods of characterization and approximation. Martingale problems for general Markov processes are systematically developed for the first time in book form. Useful to the professional as a reference and suitable for the graduate student as a text, this volume features a table of the interdependencies among the theorems, an extensive bibliography, and end-of-chapter problems.

저자 정보

STEWART N. ETHIER, PhD, is Professor of Mathematics at the University of Utah. He received his PhD in mathematics at the University of Wisconsin Madison.

THOMAS G. KURTZ, PhD, is Professor of Mathematics and Statistics at the University of Wisconsin Madison. He is a Book Review Editor for The Annals of Probability and the author of Approximation of Population Processes. Dr. Kurtz obtained his PhD in mathematics at Stanford University.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.