Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples (English Edition)

· · ·
· BPB Publications
Sách điện tử
294
Trang
Điểm xếp hạng và bài đánh giá chưa được xác minh  Tìm hiểu thêm

Giới thiệu về sách điện tử này

Concepts of Machine Learning with Practical Approaches.

 

KEY FEATURES  

● Includes real-scenario examples to explain the working of Machine Learning algorithms.

● Includes graphical and statistical representation to simplify modeling Machine Learning and Neural Networks.

● Full of Python codes, numerous exercises, and model question papers for data science students. 

 

DESCRIPTION 

The book offers the readers the fundamental concepts of Machine Learning techniques in a user-friendly language. The book aims to give in-depth knowledge of the different Machine Learning (ML) algorithms and the practical implementation of the various ML approaches.

 

This book covers different Supervised Machine Learning algorithms such as Linear Regression Model, Naïve Bayes classifier Decision Tree, K-nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithms, Unsupervised Machine Learning algorithms such as k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model and Reinforcement Learning algorithm such as Markov Decision Process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA). It also includes various feature extraction and feature selection techniques, the Recommender System, and a brief overview of Deep Learning.


By the end of this book, the reader can understand Machine Learning concepts and easily implement various ML algorithms to real-world problems.

 

WHAT YOU WILL LEARN

● Perform feature extraction and feature selection techniques.

● Learn to select the best Machine Learning algorithm for a given problem.

● Get a stronghold in using popular Python libraries like Scikit-learn, pandas, and matplotlib.

● Practice how to implement different types of Machine Learning techniques.

● Learn about Artificial Neural Network along with the Back Propagation Algorithm.

● Make use of various recommended systems with powerful algorithms.


WHO THIS BOOK IS FOR  

This book is designed for data science and analytics students, academicians, and researchers who want to explore the concepts of machine learning and practice the understanding of real cases. Knowing basic statistical and programming concepts would be good, although not mandatory.

 

TABLE OF CONTENTS

1.  Introduction

2. Supervised Learning Algorithms

3. Unsupervised Learning

4. Introduction to the Statistical Learning Theory

5. Semi-Supervised Learning and Reinforcement Learning

6. Recommended Systems


Xếp hạng sách điện tử này

Cho chúng tôi biết suy nghĩ của bạn.

Đọc thông tin

Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho AndroidiPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.