Special Groups: Boolean-theoretic Methods in the Theory of Quadratic Forms

·
· American Mathematical Society: Memoirs of the American Mathematical Society Book 689 · American Mathematical Soc.
Ebook
247
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This monograph presents a systematic study of Special Groups, a first-order universal-existential axiomatization of the theory of quadratic forms, which comprises the usual theory over fields of characteristic different from 2, and is dual to the theory of abstract order spaces. The heart of our theory begins in Chapter 4 with the result that Boolean algebras have a natural structure of reduced special group. More deeply, every such group is canonically and functorially embedded in a certain Boolean algebra, its Boolean hull. This hull contains a wealth of information about the structure of the given special group, and much of the later work consists in unveiling it. Thus, in Chapter 7 we introduce two series of invariants "living" in the Boolean hull, which characterize the isometry of forms in any reduced special group. While the multiplicative series--expressed in terms of meet and symmetric difference--constitutes a Boolean version of the Stiefel-Whitney invariants, the additive series--expressed in terms of meet and join--, which we call Horn-Tarski invariants, does not have a known analog in the field case; however, the latter have a considerably more regular behaviour. We give explicit formulas connecting both series, and compute explicitly the invariants for Pfister forms and their linear combinations. In Chapter 9 we combine Boolean-theoretic methods with techniques from Galois cohomology and a result of Voevodsky to obtain an affirmative solution to a long standing conjecture of Marshall concerning quadratic forms over formally real Pythagorean fields. Boolean methods are put to work in Chapter 10 to obtain information about categories of special groups, reduced or not. And again in Chapter 11 to initiate the model-theoretic study of the first-order theory of reduced special groups, where, amongst other things we determine its model-companion. The first-order approach is also present in the study of some outstanding classes of morphisms carried out in Chapter 5, e.g., the pure embeddings of special groups. Chapter 6 is devoted to the study of special groups of continuous functions.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.