MM Optimization Algorithms

· Other Titles in Applied Mathematics Ibhuku elingu-145 · SIAM
5.0
1 isibuyekezo
I-Ebook
232
Amakhasi
Kufanelekile
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

MM Optimization Algorithms offers an overview of the MM principle, a device for deriving optimization algorithms satisfying the ascent or descent property. These algorithms can separate the variables of a problem, avoid large matrix inversions, linearize a problem, restore symmetry, deal with equality and inequality constraints gracefully, and turn a nondifferentiable problem into a smooth problem.

The author presents the first extended treatment of MM algorithms, which are ideal for high-dimensional optimization problems in data mining, imaging, and genomics; derives numerous algorithms from a broad diversity of application areas, with a particular emphasis on statistics, biology, and data mining; and summarizes a large amount of literature that has not reached book form before.

Izilinganiso nezibuyekezo

5.0
1 isibuyekezo

Mayelana nomlobi

Kenneth Lange is the Rosenfeld Professor of Computational Genetics, and a faculty member in the Departments of Biomathematics, Human Genetics and Statistics, at the University of California, Los Angeles. He has held appointments at the University of New Hampshire, Massachusetts Institute of Technology, Harvard University, the University of Michigan, the University of Helsinki and Stanford University. He is a Fellow of the American Statistical Association, the Institute of Mathematical Statistics, and the American Institute for Medical and Biomedical Engineering. He won the Snedecor Award from the Joint Statistical Societies in 1993 and gave a platform presentation at the 2015 International Congress of Mathematicians. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, optimization theory, and applied stochastic processes. He has published four previous books: Mathematical and Statistical Methods for Genetic Analysis, Numerical Analysis for Statisticians, Applied Probability, and Optimization, all in second editions.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.