Linear Functional Analysis

·
· Springer Science & Business Media
E-book
273
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.