Lectures on Boolean Algebras

· Courier Dover Publications
E-book
160
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This presentation on the basics of Boolean algebra has ranked among the fundamental books on this important subject in mathematics and computing science since its initial publication in 1963. Concise and informal as well as systematic, the text draws upon lectures delivered by Professor Halmos at the University of Chicago to cover many topics in brief individual chapters. The approach is suitable for advanced undergraduates and graduate students in mathematics.
Starting with Boolean rings and algebras, the treatment examines fields of sets, regular open sets, elementary relations, infinite operations, subalgebras, homomorphisms, free algebras, ideals and filters, and the homomorphism theorem. Additional topics include measure algebras, Boolean spaces, the representation theorem, duality for ideals and for homomorphisms, Boolean measure spaces, isomorphisms of factors, projective and injective algebras, and many other subjects. Several chapters conclude with stimulating exercises; the solutions are not included.

Sobre o autor

Paul R. Halmos (1916–2006) was a prominent American mathematician who taught at the University of Chicago, the University of Michigan, and other schools and made significant contributions to several areas of mathematics, including mathematical logic, ergodic theory, functional analysis, and probability theory. His other Dover books are Algebraic Logic, Finite-Dimensional Vector Spaces, Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Lectures on Ergodic Theory, and Naive Set Theory.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.