Lattice Concepts of Module Theory

· Texts in the Mathematical Sciences 22. kötet · Springer Science & Business Media
E-könyv
225
Oldalak száma
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

It became more and more usual, from, say, the 1970s, for each book on Module Theory, to point out and prove some (but in no more than 15 to 20 pages) generalizations to (mostly modular) lattices. This was justified by the nowadays widely accepted perception that the structure of a module over a ring is best understood in terms of the lattice struc ture of its submodule lattice. Citing Louis H. Rowen "this important example (the lattice of all the submodules of a module) is the raison d'etre for the study of lattice theory by ring theorists". Indeed, many module-theoretic results can be proved by using lattice theory alone. The purpose of this book is to collect and present all and only the results of this kind, although for this purpose one must develop some significant lattice theory. The results in this book are of the following categories: the folklore of Lattice Theory (to be found in each Lattice Theory book), module theoretic results generalized in (modular, and possibly compactly gen erated) lattices (to be found in some 6 to 7 books published in the last 20 years), very special module-theoretic results generalized in lattices (e. g. , purity in Chapter 9 and several dimensions in Chapter 13, to be found mostly in [27], respectively, [34] and [18]) and some new con cepts (e. g.

E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.