Konvexe Analysis

· Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften 54권 · Springer-Verlag
eBook
273
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Der Autor beabsichtigt, mit dem vorliegenden Lehrbuch eine gründliche Einführung in die Theorie der konvexen Mengen und der konvexen Funk tionen zu geben. Das Buch ist aus einer Folge von drei in den Jahren 1971 bis 1973 an der Eidgenössischen Technischen Hochschule in Zürich gehaltenen Vorlesungen hervorgegangen. Es erläutert die verschiedenen, für viele Sparten der Analysis, der angewandten Mathematik und der mathematischen Ökonomie relevanten Aspekte der Konvexität. Die konvexe Analysis ist, wie die lineare Algebra, ein Gebiet der Mathematik, welches neben der analytischen Beschreib- und Beweisbarkeit oft auch eine hohe geometrische Anschaulichkeit besitzt. Fast die meisten der hier be schriebenen Ergebnisse über konvexe Mengen und Funktionen gehören offen sichtlich der reinen Mathematik an. Es ist aber auffallend, wie häufig diese Ergebnisse die Gundiage, nicht nur von Teilen der höheren Analysis, sondern auch von Theorien und Methoden der angewandten Mathematik bilden. Einiges Gewicht wird deshalb in diesem Lehrbuch darauf gelegt, zu zeigen, wie die Resultate ausserhalb des Gebietes Anwendung finden, z. B. in der reinen Mathematik bei Existenzsätzen für lineare und nichtlineare Differential-oder Integralgleichungen, in der angewandten Mathematik für die Approximations theorie oder in der mathematischen Ökonomie für Existenzaussagen über Minima konvexer Funktionen und über Lösungen von Systemen von Ungleichungen. Um die Allgemeingültigkeit vieler fundamentaler Resultate nicht zu schmälern, wurde darauf geachtet, die entsprechenden Voraus setzungen an die Topologie und Strukturen der Räume so schwach wie möglich zu halten.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.