Knot Theory and Its Applications

· Springer Science & Business Media
eBook
341
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Knot theory is a concept in algebraic topology that has found applications to a variety of mathematical problems as well as to problems in computer science, biological and medical research, and mathematical physics. This book is directed to a broad audience of researchers, beginning graduate students, and senior undergraduate students in these fields.

The book contains most of the fundamental classical facts about the theory, such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials; also included are key newer developments and special topics such as chord diagrams and covering spaces. The work introduces the fascinating study of knots and provides insight into applications to such studies as DNA research and graph theory. In addition, each chapter includes a supplement that consists of interesting historical as well as mathematical comments.

The author clearly outlines what is known and what is not known about knots. He has been careful to avoid advanced mathematical terminology or intricate techniques in algebraic topology or group theory. There are numerous diagrams and exercises relating the material. The study of Jones polynomials and the Vassiliev invariants are closely examined.

"The book ...develops knot theory from an intuitive geometric-combinatorial point of view, avoiding completely more advanced concepts and techniques from algebraic topology...Thus the emphasis is on a lucid and intuitive exposition accessible to a broader audience... The book, written in a stimulating and original style, will serve as a first approach to this interesting field for readers with various backgrounds in mathematics, physics, etc. It is the first text developing recent topics as the Jones polynomial and Vassiliev invariants on a level accessible also for non-specialists in the field." -Zentralblatt Math

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.