Stochastic Complexity In Statistical Inquiry

· World Scientific Series In Computer Science Book 15 · World Scientific
Ebook
188
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

This book describes how model selection and statistical inference can be founded on the shortest code length for the observed data, called the stochastic complexity. This generalization of the algorithmic complexity not only offers an objective view of statistics, where no prejudiced assumptions of 'true' data generating distributions are needed, but it also in one stroke leads to calculable expressions in a range of situations of practical interest and links very closely with mainstream statistical theory. The search for the smallest stochastic complexity extends the classical maximum likelihood technique to a new global one, in which models can be compared regardless of their numbers of parameters. The result is a natural and far reaching extension of the traditional theory of estimation, where the Fisher information is replaced by the stochastic complexity and the Cramer-Rao inequality by an extension of the Shannon-Kullback inequality. Ideas are illustrated with applications from parametric and non-parametric regression, density and spectrum estimation, time series, hypothesis testing, contingency tables, and data compression.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.