Predictive Simulation of Semiconductor Processing: Status and Challenges

·
· Springer Series in Materials Science Book 72 · Springer Science & Business Media
Ebook
490
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Predictive Simulation of Semiconductor Processing enables researchers and developers to extend the scaling range of semiconductor devices beyond the parameter range of empirical research. It requires a thorough understanding of the basic mechanisms employed in device fabrication, such as diffusion, ion implantation, epitaxy, defect formation and annealing, and contamination. This book presents an in-depth discussion of our current understanding of key processes and identifies areas that require further work in order to achieve the goal of a comprehensive, predictive process simulation tool.

About the author

J. Dabrowski: Born in Warsaw, Poland, Sept. 29, 1958. PhD, Institute of Physics of the Polish Academy of Science (IF PAN), Warsaw, 1989. Scientific staff member IF PAN 1983-1992; postdoctoral fellow Fritz Haber Inbstitute of the Max Planck Society, Berlin, Germany, 1990-1991; postdoctoral fellow Xerox Palo Alto Research Center, California, 1992; since 1993 with IHP-microelectronics, Frankfurt (Oder), Germany. Conference series chairman, Challenges in Predictive Process Simulation (1997, 2000, 2002); international advisory commmittee member, International Training Institute for Materials Science, Hanoi, Vietnam. Project leader, German Research Society (1998-2000); von Neuman Institute for Computing (since 1993). Author (monograph), "Silicon surfaces and formation of interfaces; basic science in the industrial world" (World Scientific, 2000). Editor (book) , ""Recent Developments in Vacuum Science and Technology" (Research Signpost, 2003). Research in atomic diffusion mechanism in solid state; atomic structure of surfaces and semiconductor/dielectric interfaces; atomic structure of defects in semiconductors and insulators; signal processing for telecommunication. Achievements include discovery of atomic structure of the clean Si(113) surface; atomic structure of the main electron trap in GaAs (EL2 defect); atomic structure of the interface between a high-K dielectric (Pr2O3) and Si(001). Patents for silicon microelectronic technology; patents pending for telecommunication.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.