Invariance and Structural Dependence

· Lecture Notes in Economics and Mathematical Systems 380 knyga · Springer Science & Business Media
El. knyga
245
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

This is a revised version of a doctoral thesis, submitted in mimeographed fonn to the Faculty of Arts, Uppsala University, 1988. It deals with the notions of struc tural dependence and independence, which are used in many applications of mathe matics to science. For instance, a physical law states that one physical aspect is structurally dependent on one or more other aspects. Structural dependence is closely related to the mathematical idea of functional dependence. However, struc tural dependence is primarily thought of as a relation holding between aspects rather than between their measures. In this book, the traditional way of treating aspects within measurement theory is modified. An aspect is not viewed as a set-theoretical structure but as a function which has sets as arguments and set-theoretical structures as values. This way of regarding aspects is illustrated with an application to social choice and group deci sion theory. Structural dependence is connected with the idea of concomitant variations and the mathematical notion of invariance. This implies that the study of this notion has roots going back to Mill's inductive logic, to Klein's Erlangen Program for geome try and to Padoa's method for proving the independence of symbols in formal logic.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.