Pavel I. Etingof · Oleg Golberg · Sebastian Hensel · Tiankai Liu · Alex Schwendner · Dmitry Vaintrob · Elena Yudovina
jan. de 2011 · Student Mathematical LibraryLivro 59 · American Mathematical Soc.
E-book
228
Páginas
Amostra
reportAs notas e avaliações não são verificadas Saiba mais
Sobre este e-book
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Série
Sobre o autor
Pavel Etingof, Massachusetts Institute of Technology, Cambridge, MA|||Sebastian Hensel, Universitat Bonn, Germany|Tiankai Liu, Massachusetts Institute of Technology, Cambridge, MA|Alex Schwendner, Two Sigma Investments, New York, N
Avaliar este e-book
Diga o que você achou
Informações de leitura
Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.