Introduction to Quantum Groups

· Springer Science & Business Media
كتاب إلكتروني
352
صفحة
لم يتم التحقّق من التقييمات والمراجعات.  مزيد من المعلومات

معلومات عن هذا الكتاب الإلكتروني

According to Drinfeld, a quantum group is the same as a Hopf algebra. This includes as special cases, the algebra of regular functions on an algebraic group and the enveloping algebra of a semisimple Lie algebra. The qu- tum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. Although such quantum groups appeared in connection with problems in statistical mechanics and are closely related to conformal field theory and knot theory, we will regard them purely as a new development in Lie theory. Their place in Lie theory is as follows. Among Lie groups and Lie algebras (whose theory was initiated by Lie more than a hundred years ago) the most important and interesting ones are the semisimple ones. They were classified by E. Cartan and Killing around 1890 and are quite central in today's mathematics. The work of Chevalley in the 1950s showed that semisimple groups can be defined over arbitrary fields (including finite ones) and even over integers. Although semisimple Lie algebras cannot be deformed in a non-trivial way, the work of Drinfeld and Jimbo showed that their enveloping (Hopf) algebras admit a rather interesting deformation depending on a parameter v. These are the quantized enveloping algebras of Drinfeld and Jimbo. The classical enveloping algebras could be obtained from them for v —» 1.

تقييم هذا الكتاب الإلكتروني

أخبرنا ما هو رأيك.

معلومات القراءة

الهواتف الذكية والأجهزة اللوحية
ينبغي تثبيت تطبيق كتب Google Play لنظام التشغيل Android وiPad/iPhone. يعمل هذا التطبيق على إجراء مزامنة تلقائية مع حسابك ويتيح لك القراءة أثناء الاتصال بالإنترنت أو بلا اتصال بالإنترنت أينما كنت.
أجهزة الكمبيوتر المحمول وأجهزة الكمبيوتر
يمكنك الاستماع إلى الكتب المسموعة التي تم شراؤها على Google Play باستخدام متصفح الويب على جهاز الكمبيوتر.
أجهزة القراءة الإلكترونية والأجهزة الأخرى
للقراءة على أجهزة الحبر الإلكتروني، مثل أجهزة القارئ الإلكتروني Kobo، عليك تنزيل ملف ونقله إلى جهازك. يُرجى اتّباع التعليمات المفصّلة في مركز المساعدة لتتمكّن من نقل الملفات إلى أجهزة القارئ الإلكتروني المتوافقة.