Introduction to NeutroRings

Ā· Infinite Study
電子ę›øē±
12
ćƒšćƒ¼ć‚ø
利ē”ØåÆčƒ½
č©•ä¾”ćØćƒ¬ćƒ“ćƒ„ćƒ¼ćÆē¢ŗčŖęøˆćæ恧ćÆć‚ć‚Šć¾ć›ć‚“ č©³ē“°

ć“ć®é›»å­ę›øē±ć«ć¤ć„恦

The objective of this paper is to introduce the concept of NeutroRings by considering three NeutroAxioms (NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication over addition)). Several interesting results and examples on NeutroRings, NeutroSubgrings, NeutroIdeals, NeutroQuotientRings and NeutroRingHomomorphisms are presented. It is shown that the 1st isomorphism theorem of the classical rings holds in the class of NeutroRings.


ć“ć®é›»å­ę›øē±ć‚’č©•ä¾”恙悋

ć”ę„Ÿęƒ³ć‚’ćŠčžć‹ć›ćć ć•ć„ć€‚

čŖ­ę›øęƒ…å ±

ć‚¹ćƒžćƒ¼ćƒˆćƒ•ć‚©ćƒ³ćØć‚æćƒ–ćƒ¬ćƒƒćƒˆ
Android 悄 iPad / iPhone ē”Ø恮 Google Play 惖惃ć‚Æć‚¹ ć‚¢ćƒ—ćƒŖć‚’ć‚¤ćƒ³ć‚¹ćƒˆćƒ¼ćƒ«ć—ć¦ćć ć•ć„ć€‚ć“ć®ć‚¢ćƒ—ćƒŖćŒć‚¢ć‚«ć‚¦ćƒ³ćƒˆćØč‡Ŗ動ēš„ć«åŒęœŸć™ć‚‹ćŸć‚ć€ć©ć“ć§ć‚‚ć‚Ŗćƒ³ćƒ©ć‚¤ćƒ³ć‚„ć‚Ŗćƒ•ćƒ©ć‚¤ćƒ³ć§čŖ­ć‚€ć“ćØćŒć§ćć¾ć™ć€‚
ćƒŽćƒ¼ćƒˆćƒ‘ć‚½ć‚³ćƒ³ćØćƒ‡ć‚¹ć‚Æ惈惃惗 ćƒ‘ć‚½ć‚³ćƒ³
Google Play ć§č³¼å…„ć—ćŸć‚Ŗćƒ¼ćƒ‡ć‚£ćƒ–ćƒƒć‚ÆćÆć€ćƒ‘ć‚½ć‚³ćƒ³ć®ć‚¦ć‚§ćƒ–ćƒ–ćƒ©ć‚¦ć‚¶ć§å†ē”Ÿć§ćć¾ć™ć€‚
電子ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖć©ć®ćƒ‡ćƒć‚¤ć‚¹
Kobo 電子ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ćŖ恩恮 E Ink ćƒ‡ćƒć‚¤ć‚¹ć§čŖ­ć‚€ć«ćÆć€ćƒ•ć‚”ć‚¤ćƒ«ć‚’ćƒ€ć‚¦ćƒ³ćƒ­ćƒ¼ćƒ‰ć—ć¦ćƒ‡ćƒć‚¤ć‚¹ć«č»¢é€ć™ć‚‹åæ…č¦ćŒć‚ć‚Šć¾ć™ć€‚ć‚µćƒćƒ¼ćƒˆć•ć‚Œć¦ć„ć‚‹é›»å­ę›øē±ćƒŖćƒ¼ćƒ€ćƒ¼ć«ćƒ•ć‚”ć‚¤ćƒ«ć‚’č»¢é€ć™ć‚‹ę–¹ę³•ć«ć¤ć„ć¦č©³ć—ććÆć€ćƒ˜ćƒ«ćƒ—ć‚»ćƒ³ć‚æćƒ¼ć‚’ć”č¦§ćć ć•ć„ć€‚