Introduction to Maple: Edition 3

· Springer Science & Business Media
Электрондук китеп
828
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

The first two editions of this book have been very well received by the com munity, but so many revisions ofthe Maple system have occurred since then that simply reprinting the out-of-stock book would not do anymore. A ma jor revision of the book was inevitable, too. The wording "major revision" must be taken seriously because I not only corrected typographical errors, rephrased text fragments, and updated many examples, but I also rewrote complete chapters and added new material. In particular, the chapter on differential equations now discusses Liesymmetry methods, partial differen tial equations, and numerical methods. Linear algebra is based throughout the book on the packages LinearAlgebra and VectorCalculus, which re place the deprecated package linalg. Maple users are strongly advised to do their work with the new packages. The chapter on simplification has been updated and expanded; it discusses the use of assumptions in more detail now. Last, but not least, a new chapter on Grabner basis theory and the Groebner package in Maple has been added to the book. It includes many applications of Grabner basis theory. Many of the Maple sessions have been rewritten so that they comply with the most recent version of Maple. As a result of all this work, hardly any section in the book has been left untouched. vi Preface to the Third Edition From the Preface of the Second Edition The first edition ofthis book has been very wellreceived by the community.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.