Introduction to Axiomatic Set Theory

·
· Graduate Texts in Mathematics წიგნი 1 · Springer Science & Business Media
ელწიგნი
251
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

In 1963, the first author introduced a course in set theory at the Uni versity of Illinois whose main objectives were to cover G6del's work on the consistency of the axiom of choice (AC) and the generalized con tinuum hypothesis (GCH), and Cohen's work on the independence of AC and the GCH. Notes taken in 1963 by the second author were the taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are highlighted, and second, the student who wishes to master the sub ject is compelled to develop the details on his own. However, an in structor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text. We have chosen instead a development that is quite detailed and complete. For our slow development we claim the following advantages. The text is one from which a student can learn with little supervision and instruction. This enables the instructor to use class time for the presentation of alternative developments and supplementary material.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.