Introduction to Abstract Algebra

· Textbooks in Mathematics Книга 31 · CRC Press
Електронна книга
344
Сторінки
Можна додати
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles.

A Quick Introduction to Algebra

The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduce rational numbers and modular arithmetic as well as to present the first isomorphism theorem at the set level.

The Basics of Abstract Algebra for a First-Semester Course

Subsequent chapters cover orthogonal groups, stochastic matrices, Lagrange’s theorem, and groups of units of monoids. The text also deals with homomorphisms, which lead to Cayley’s theorem of reducing abstract groups to concrete groups of permutations. It then explores rings, integral domains, and fields.

Advanced Topics for a Second-Semester Course

The final, mostly self-contained chapters delve deeper into the theory of rings, fields, and groups. They discuss modules (such as vector spaces and abelian groups), group theory, and quasigroups.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.