Integer Programming

· ·
· Graduate Texts in Mathematics 271-кітап · Springer
Электрондық кітап
456
бет
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study.

Key topics include:

  • formulations
  • polyhedral theory
  • cutting planes
  • decomposition
  • enumeration
  • semidefinite relaxations

Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

Авторы туралы

Michelangelo Conforti is Professor of Mathematics at the University of Padova. Together with G. Cornuéjols and M. R. Rao, he received the 2000 Fulkerson Prize in discrete mathematics.

Gérard Cornuéjols is IBM University Professor of Operations Research at Carnegie Mellon University. His research has been recognized by numerous honors, among them the Fulkerson Prize, the Frederick W. Lanchester Prize, the Dantzig Prize, and the John von Neumann Theory Prize.

Giacomo Zambelli is Associate Professor (Reader) of Management Science at the London School of Economics and Political Sciences.

All three authors are leading experts in the fields of integer programming, graph theory, and combinatorial optimization.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.