Integer Programming

· ·
· Graduate Texts in Mathematics Kniha 271 · Springer
E‑kniha
456
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study.

Key topics include:

  • formulations
  • polyhedral theory
  • cutting planes
  • decomposition
  • enumeration
  • semidefinite relaxations

Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

O autorovi

Michelangelo Conforti is Professor of Mathematics at the University of Padova. Together with G. Cornuéjols and M. R. Rao, he received the 2000 Fulkerson Prize in discrete mathematics.

Gérard Cornuéjols is IBM University Professor of Operations Research at Carnegie Mellon University. His research has been recognized by numerous honors, among them the Fulkerson Prize, the Frederick W. Lanchester Prize, the Dantzig Prize, and the John von Neumann Theory Prize.

Giacomo Zambelli is Associate Professor (Reader) of Management Science at the London School of Economics and Political Sciences.

All three authors are leading experts in the fields of integer programming, graph theory, and combinatorial optimization.

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.