Inequalities: A Mathematical Olympiad Approach

· Springer Science & Business Media
3,0
O recenzie
Carte electronică
220
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This book is intended for the Mathematical Olympiad students who wish to p- pare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization pr- lems. An important part of this book deals with geometric inequalities and this fact makes a big di?erence with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a di?erent character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. H- ever, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy- Schwarzinequality, the rearrangementinequality, the Jensen inequality, the Mu- head theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad pr- lems. We also emphasize how the substitution strategy is used to deduce several inequalities.

Evaluări și recenzii

3,0
O recenzie

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.