Inequalities: A Mathematical Olympiad Approach

· Springer Science & Business Media
3,0
1 avis
E-book
220
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This book is intended for the Mathematical Olympiad students who wish to p- pare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization pr- lems. An important part of this book deals with geometric inequalities and this fact makes a big di?erence with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a di?erent character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. H- ever, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy- Schwarzinequality, the rearrangementinequality, the Jensen inequality, the Mu- head theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad pr- lems. We also emphasize how the substitution strategy is used to deduce several inequalities.

Notes et avis

3,0
1 avis

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.