Improved Definition of NonStandard Neutrosophic Logic and Introduction to Neutrosophic Hyperreals (Fifth version)

· Infinite Study
E-bog
20
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

In the fifth version of our response-paper [26] to Imamura’s criticism, we recall that NonStandard Neutrosophic Logic was never used by neutrosophic community in no application, that the quarter of century old neutrosophic operators (1995-1998) criticized by Imamura were never utilized since they were improved shortly after but he omits to tell their development, and that in real world applications we need to convert/approximate the NonStandard Analysis hyperreals, monads and binads to tiny intervals with the desired accuracy – otherwise they would be inapplicable. We point out several errors and false statements by Imamura [21] with respect to the inf/sup of nonstandard subsets, also Imamura’s “rigorous definition of neutrosophic logic” is wrong and the same for his definition of nonstandard unit interval, and we prove that there is not a total order on the set of hyperreals (because of the newly introduced Neutrosophic Hyperreals that are indeterminate), whence the Transfer Principle from R to R* is questionable. After his criticism, several response publications on theoretical nonstandard neutrosophics followed in the period 2018-2022. As such, I extended the NonStandard Analysis by adding the left monad closed to the right, right monad closed to the left, pierced binad (we introduced in 1998), and unpierced binad - all these in order to close the newly extended nonstandard space (R*) under nonstandard addition, nonstandard subtraction, nonstandard multiplication, nonstandard division, and nonstandard power operations [23, 24]. Improved definitions of NonStandard Unit Interval and NonStandard Neutrosophic Logic, together with NonStandard Neutrosophic Operators are presented.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.