Hilberttransformation, gebrochene Integration und Differentiation

· Springer-Verlag
E-book
84
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Diese Monographie behandelt die eindimensionale Hilberttransformation und die ge brochene Integration auf der reellen Zahlengeraden. Da sich viele der Beweise auf die Fouriertransformation für Lp-Funktionen (1 ~ P ~ 2) stützen, haben wir in Kapitel 1 alles Nötige aus der Theorie der Fouriertransformation für Funktionen einer Veränder lichen systematisch zusammengestellt. Weiterhin haben wir uns erlaubt, die wohl bekannten Eigenschaften der Hilberttransformation ohne Beweis vorauszusetzen und weniger bekannte ausführlich zu beweisen. Der Schwerpunkt der Monographie liegt bei den Kapiteln 3-6, deren Ergebnisse zum großen Teil neu sind. Da in der Einleitung über die Problemstellung und über die Resultate näher berichtet wird, sei an dieser Stelle nur erwähnt, daß Ausgangspunkte unserer Überlegungen Arbeiten folgender Mathematiker sind: S. BOCHNER, J. L. B. COOPER, W. FELLER, G. H. HARDY, J. E. LITTLEWOOD, G. O. OKIKIOLU, M. RIESZ, E. C. TITCHMARSH und H. WEYL. Dadurch wird eine Einordnung unserer Ergebnisse gewährleistet. Unser besonderer Dank gilt Herrn Professor J. L. B. COOPER für viele fruchtbare Dis kussionen und wertvolle Ratschläge. Seine Vorträge im Aachener Kolloquium und seine Teilnahme an einer Tagung, die der erstgenannte Verfasser im MATHEMATISCHEN FORSCHUNGSINSTITUT OBERWOLFACH im August 1963 abgehalten hat, waren stets an regend. Die Verfasser danken den Herrn Dr. E. GÖRLICH und H. JOHNEN für manche kritischen Bemerkungen und für ihre Mithilfe bei der Durchsicht von Teilen des Manuskripts und der Korrekturen, ferner Frl. K. REIMER-KELLNER, die das Manuskript mit großer Sorgfalt geschrieben hat, und dem Westdeutschen Verlag für sein Ent gegenkommen und die gute Ausstattung dieser Monographie.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.