Hilberttransformation, gebrochene Integration und Differentiation

· Springer-Verlag
eBook
84
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Diese Monographie behandelt die eindimensionale Hilberttransformation und die ge brochene Integration auf der reellen Zahlengeraden. Da sich viele der Beweise auf die Fouriertransformation für Lp-Funktionen (1 ~ P ~ 2) stützen, haben wir in Kapitel 1 alles Nötige aus der Theorie der Fouriertransformation für Funktionen einer Veränder lichen systematisch zusammengestellt. Weiterhin haben wir uns erlaubt, die wohl bekannten Eigenschaften der Hilberttransformation ohne Beweis vorauszusetzen und weniger bekannte ausführlich zu beweisen. Der Schwerpunkt der Monographie liegt bei den Kapiteln 3-6, deren Ergebnisse zum großen Teil neu sind. Da in der Einleitung über die Problemstellung und über die Resultate näher berichtet wird, sei an dieser Stelle nur erwähnt, daß Ausgangspunkte unserer Überlegungen Arbeiten folgender Mathematiker sind: S. BOCHNER, J. L. B. COOPER, W. FELLER, G. H. HARDY, J. E. LITTLEWOOD, G. O. OKIKIOLU, M. RIESZ, E. C. TITCHMARSH und H. WEYL. Dadurch wird eine Einordnung unserer Ergebnisse gewährleistet. Unser besonderer Dank gilt Herrn Professor J. L. B. COOPER für viele fruchtbare Dis kussionen und wertvolle Ratschläge. Seine Vorträge im Aachener Kolloquium und seine Teilnahme an einer Tagung, die der erstgenannte Verfasser im MATHEMATISCHEN FORSCHUNGSINSTITUT OBERWOLFACH im August 1963 abgehalten hat, waren stets an regend. Die Verfasser danken den Herrn Dr. E. GÖRLICH und H. JOHNEN für manche kritischen Bemerkungen und für ihre Mithilfe bei der Durchsicht von Teilen des Manuskripts und der Korrekturen, ferner Frl. K. REIMER-KELLNER, die das Manuskript mit großer Sorgfalt geschrieben hat, und dem Westdeutschen Verlag für sein Ent gegenkommen und die gute Ausstattung dieser Monographie.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.