Higher Index Theory

· Cambridge Studies in Advanced Mathematics Livro 189 · Cambridge University Press
Livro eletrónico
595
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

Index theory studies the solutions to differential equations on geometric spaces, their relation to the underlying geometry and topology, and applications to physics. If the space of solutions is infinite dimensional, it becomes necessary to generalise the classical Fredholm index using tools from the K-theory of operator algebras. This leads to higher index theory, a rapidly developing subject with connections to noncommutative geometry, large-scale geometry, manifold topology and geometry, and operator algebras. Aimed at geometers, topologists and operator algebraists, this book takes a friendly and concrete approach to this exciting theory, focusing on the main conjectures in the area and their applications outside of it. A well-balanced combination of detailed introductory material (with exercises), cutting-edge developments and references to the wider literature make this a valuable guide to this active area for graduate students and experts alike.

Acerca do autor

Rufus Willett is Professor of Mathematics at the University of Hawaii, Manoa. He has interdisciplinary research interests across large-scale geometry, K-theory, index theory, manifold topology and geometry, and operator algebras.

Guoliang Yu is the Powell Chair in Mathematics and University Distinguished Professor at Texas A & M University. He was an invited speaker at the International Congress of Mathematicians in 2006, is a Fellow of the American Mathematical Society and a Simons Fellow in Mathematics. His research interests include large-scale geometry, K-theory, index theory, manifold topology and geometry, and operator algebras.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.