Hierarchical Matrices: Algorithms and Analysis

· Springer Series in Computational Mathematics 49권 · Springer
eBook
511
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix.

The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition.

Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists in computational mathematics, physics, chemistry and engineering.

저자 정보

The author is a very well-known author of Springer, working in the field of numerical mathematics for partial differential equations and integral equations. He has published numerous books in the SSCM series, e.g., about the multi-grid method, about the numerical analysis of elliptic pdes, about iterative solution of large systems of equation, and a book in German about the technique of hierarchical matrices. Hackbusch is member of the editorial board of Springer' s book series "Advances in Numerical Mathematics", "The International Cryogenics Monograph Series" and has now joined as new member of the editorial board of "Springer Series of Computational Mathematics".

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.