Group Rings and Class Groups

·
· Oberwolfach Seminars 第 18 冊 · Birkhäuser
電子書
210
評分和評論未經驗證  瞭解詳情

關於本電子書

The first part of the book centers around the isomorphism problem for finite groups; i.e. which properties of the finite group G can be determined by the integral group ring ZZG ? The authors have tried to present the results more or less selfcontained and in as much generality as possible concerning the ring of coefficients. In the first section, the class sum correspondence and some related results are derived. This part is the proof of the subgroup rigidity theorem (Scott - Roggenkamp; Weiss) which says that a finite subgroup of the p-adic integral group ring of a finite p-group is conjugate to a subgroup of the finite group. A counterexample to the conjecture of Zassenhaus that group basis are rationally conjugate, is presented in the semilocal situation (Scott - Roggenkamp). To this end, an extended version of Clifford theory for p-adic integral group rings is presented. Moreover, several examples are given to demonstrate the complexity of the isomorphism problem. The second part of the book is concerned with various aspects of the structure of rings of integers as Galois modules. It begins with a brief overview of major results in the area; thereafter the majority of the text focuses on the use of the theory of Hopf algebras. It begins with a thorough and detailed treatment of the required foundational material and concludes with new and interesting applications to cyclotomic theory and to elliptic curves with complex multiplication. Examples are used throughout both for motivation, and also to illustrate new ideas.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。