Group Rings and Class Groups

·
· Oberwolfach Seminars Libro 18 · Birkhäuser
Libro electrónico
210
Páginas
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

The first part of the book centers around the isomorphism problem for finite groups; i.e. which properties of the finite group G can be determined by the integral group ring ZZG ? The authors have tried to present the results more or less selfcontained and in as much generality as possible concerning the ring of coefficients. In the first section, the class sum correspondence and some related results are derived. This part is the proof of the subgroup rigidity theorem (Scott - Roggenkamp; Weiss) which says that a finite subgroup of the p-adic integral group ring of a finite p-group is conjugate to a subgroup of the finite group. A counterexample to the conjecture of Zassenhaus that group basis are rationally conjugate, is presented in the semilocal situation (Scott - Roggenkamp). To this end, an extended version of Clifford theory for p-adic integral group rings is presented. Moreover, several examples are given to demonstrate the complexity of the isomorphism problem. The second part of the book is concerned with various aspects of the structure of rings of integers as Galois modules. It begins with a brief overview of major results in the area; thereafter the majority of the text focuses on the use of the theory of Hopf algebras. It begins with a thorough and detailed treatment of the required foundational material and concludes with new and interesting applications to cyclotomic theory and to elliptic curves with complex multiplication. Examples are used throughout both for motivation, and also to illustrate new ideas.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.