Elementary Stability and Bifurcation Theory: Edition 2

· Springer Science & Business Media
Ebook
324
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In its most general form bifurcation theory is a theory of asymptotic solutions of nonlinear equations. By asymptotic solutions we mean, for example, steady solutions, time-periodic solutions, and quasi-periodic solutions. The purpose of this book is to teach the theory of bifurcation of asymptotic solutions of evolution problems governed by nonlinear differential equations. We have written this book for the broadest audience of potentially interested learners: engineers, biologists, chemists, physicists, mathematicians, economists, and others whose work involves understanding asymptotic solutions of nonlinear differential equations. To accomplish our aims, we have thought it necessary to make the analysis: (1) general enough to apply to the huge variety of applications which arise in science and technology; and (2) simple enough so that it can be understood by persons whose mathe matical training does not extend beyond the classical methods of analysis which were popular in the nineteenth century. Of course, it is not possible to achieve generality and simplicity in a perfect union but, in fact, the general theory is simpler than the detailed theory required for particular applications. The general theory abstracts from the detailed problems only the essential features and provides the student with the skeleton on which detailed structures of the applications must rest. lt is generally believed that the mathematical theory of bifurcation requires some functional analysis and some ofthe methods of topology and dynamics.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.