Geometry of Cuts and Metrics

· Algorithms and Combinatorics 15권 · Springer
eBook
588
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Cuts and metrics are well-known objects that arise - independently, but with many deep and fascinating connections - in diverse fields: in graph theory, combinatorial optimization, geometry of numbers, distance geometry, combinatorial matrix theory, statistical physics, VLSI design etc. A main feature of this book is its interdisciplinarity. The book contains a wealth of results, from different mathematical disciplines, which are presented here in a unified and comprehensive manner. Geometric representations and methods turn out to be the linking theme. This book will provide a unique and invaluable source for researchers and graduate students.

From the Reviews:

"This book is definitely a milestone in the literature of integer programming and combinatorial optimization. It draws from the interdisciplinarity of these fields as it gathers methods and results from polytope theory, geometry of numbers, probability theory, design and graph theory around two objects, cuts and metrics. [... ] The book is very nicely written [... ] The book is also very well structured. With knowledge about the relevant terms, one can enjoy special subsections without being entirely familiar with the rest of the chapter. This makes it not only an interesting research book but even a dictionary. [... ] In my opinion, the book is a beautiful piece of work. The longer one works with it, the more beautiful it becomes." Robert Weismantel, Optima 56 (1997)

"... In short, this is a very interesting book which is nice to have." Alexander I. Barvinok, MR 1460488 (98g:52001)

"... This is a large and fascinating book. As befits a book which contains material relevant to so many areas of mathematics (and related disciplines such as statistics, physics, computing science, and economics), it is self-contained and written in a readable style. Moreover, the index, bibliography, and table of contents are all that they should be in such a work; it is easy to find as much or as little introductory material as needed." R.Dawson, Zentralblatt MATH Database 0885.52001

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.