Geometry and Complexity Theory

· Cambridge Studies in Advanced Mathematics Boek 169 · Cambridge University Press
E-boek
353
Pagina's
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Over de auteur

J. M. Landsberg is Professor of Mathematics at Texas A & M University. He is a leading geometer working in complexity theory, with research interests in differential geometry, algebraic geometry, representation theory, the geometry and application of tensors, and most recently, algebraic complexity theory. The author of over sixty research articles and four books, he has given numerous intensive research courses and lectures at international conferences. He co-organized the fall 2014 semester 'Algorithms and Complexity in Algebraic Geometry' program at the Simons Institute for the Theory of Computing, University of California, Berkeley and served as the UC Berkeley Chancellor's Professor during the program.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.