Geometry and Complexity Theory

· Cambridge Studies in Advanced Mathematics Livre 169 · Cambridge University Press
E-book
353
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

À propos de l'auteur

J. M. Landsberg is Professor of Mathematics at Texas A & M University. He is a leading geometer working in complexity theory, with research interests in differential geometry, algebraic geometry, representation theory, the geometry and application of tensors, and most recently, algebraic complexity theory. The author of over sixty research articles and four books, he has given numerous intensive research courses and lectures at international conferences. He co-organized the fall 2014 semester 'Algorithms and Complexity in Algebraic Geometry' program at the Simons Institute for the Theory of Computing, University of California, Berkeley and served as the UC Berkeley Chancellor's Professor during the program.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.