Geometry and Complexity Theory

· Cambridge Studies in Advanced Mathematics Libro 169 · Cambridge University Press
eBook
353
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

Two central problems in computer science are P vs NP and the complexity of matrix multiplication. The first is also a leading candidate for the greatest unsolved problem in mathematics. The second is of enormous practical and theoretical importance. Algebraic geometry and representation theory provide fertile ground for advancing work on these problems and others in complexity. This introduction to algebraic complexity theory for graduate students and researchers in computer science and mathematics features concrete examples that demonstrate the application of geometric techniques to real world problems. Written by a noted expert in the field, it offers numerous open questions to motivate future research. Complexity theory has rejuvenated classical geometric questions and brought different areas of mathematics together in new ways. This book will show the beautiful, interesting, and important questions that have arisen as a result.

Acerca del autor

J. M. Landsberg is Professor of Mathematics at Texas A & M University. He is a leading geometer working in complexity theory, with research interests in differential geometry, algebraic geometry, representation theory, the geometry and application of tensors, and most recently, algebraic complexity theory. The author of over sixty research articles and four books, he has given numerous intensive research courses and lectures at international conferences. He co-organized the fall 2014 semester 'Algorithms and Complexity in Algebraic Geometry' program at the Simons Institute for the Theory of Computing, University of California, Berkeley and served as the UC Berkeley Chancellor's Professor during the program.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.