Geometry: A Very Short Introduction

· Oxford University Press
4,0
2 anmeldelser
E-bok
144
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The study of geometry is at least 2500 years old, and it is within this field that the concept of mathematical proof - deductive reasoning from a set of axioms - first arose. To this day geometry remains a very active area of research in mathematics. This Very Short Introduction covers the areas of mathematics falling under geometry, starting with topics such as Euclidean and non-Euclidean geometries, and ranging to curved spaces, projective geometry in Renaissance art, and geometry of space-time inside a black hole. Starting from the basics, Maciej Dunajski proceeds from concrete examples (of mathematical objects like Platonic solids, or theorems like the Pythagorean theorem) to general principles. Throughout, he outlines the role geometry plays in the broader context of science and art. Very Short Introductions: Brilliant, Sharp, Inspiring ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Vurderinger og anmeldelser

4,0
2 anmeldelser

Om forfatteren

Maciej Dunajski is a Fellow of Clare College , and a Professor of Mathematical Physics at the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge. His research interests are Differential and Projective Geometry, Solitons, and General Theory of Relativity. In 2021 he was awarded the Atiyah Fellowship by the London Mathematical Society. He is the author of Solitons, Instantons, and Twistors, (OUP, 2009).

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.