Geometric Design of Linkages

· Interdisciplinary Applied Mathematics Kirja 11 · Springer Science & Business Media
E-kirja
320
sivuja
Arvioita ja arvosteluja ei ole vahvistettu Lue lisää

Tietoa tästä e-kirjasta

to introduce these techniques and additional background is provided in appendices. The ?rst chapter presents an overview of the articulated systems that we will be considering in this book. The generic mobility of a linkage is de?ned, and we separate them into the primary classes of planar, spherical, and spatial chains. The second chapter presents the analysis of planar chains and details their movement and classi?cation. Chapter three develops the graphical design theory for planar linkages and introduces many of the geometric principlesthatappearintheremainderofthebook.Inparticular,geometric derivations of the pole triangle and the center-point theorem anticipate analytical results for the spherical and spatial cases. Chapter four presents the theory of planar displacements, and Chapter ?ve presents the algebraic design theory. The bilinear structure of the - sign equations provides a solution strategy that emphasizes the geometry underlying linear algebra. The ?ve-position solution includes an elimi- tion step that is probably new to most students, though it is understood and well-received in the classroom. Chapters six and seven introduce the properties of spherical linkages and detail the geometric theory of spatial rotations. Chapter eight presents the design theory for these linkages, which is analogous to the planar theory. This material exercises the student’s use of vector methods to represent geometry in three dimensions. Perpendicular bisectors in the planar design theory become perpendicular bisecting planes that intersect to de?ne axes. The analogue provides students with a geometric perspective of the linear equations that they are solving.

Arvioi tämä e-kirja

Kerro meille mielipiteesi.

Tietoa lukemisesta

Älypuhelimet ja tabletit
Asenna Google Play Kirjat ‑sovellus Androidille tai iPadille/iPhonelle. Se synkronoituu automaattisesti tilisi kanssa, jolloin voit lukea online- tai offline-tilassa missä tahansa oletkin.
Kannettavat ja pöytätietokoneet
Voit kuunnella Google Playsta ostettuja äänikirjoja tietokoneesi selaimella.
Lukulaitteet ja muut laitteet
Jos haluat lukea kirjoja sähköisellä lukulaitteella, esim. Kobo-lukulaitteella, sinun täytyy ladata tiedosto ja siirtää se laitteellesi. Siirrä tiedostoja tuettuihin lukulaitteisiin seuraamalla ohjekeskuksen ohjeita.