Generalized Tate Cohomology

·
· American Mathematical Society: Memoirs of the American Mathematical Society 543-kitob · American Mathematical Soc.
E-kitob
178
Sahifalar soni
Reytinglar va sharhlar tasdiqlanmagan  Batafsil

Bu e-kitob haqida

Let [italic capital]G be a compact Lie group, [italic capitals]EG a contractible free [italic capital]G-space and let [italic capitals]E~G be the unreduced suspension of [italic capitals]EG with one of the cone points as basepoint. Let [italic]k*[over][subscript italic capital]G be a [italic capital]G-spectrum. Let [italic capital]X+ denote the disjoint union of [italic capital]X and a [italic capital]G-fixed basepoint. Define the [italic capital]G-spectra [italic]f([italic]k*[over][subscript italic capital]G) = [italic]k*[over][subscript italic capital]G [up arrowhead symbol] [italic capitals]EG+, [italic]c([italic]k*[over][subscript italic capital]G) = [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G), and [italic]t([italic]k[subscript italic capital]G)* = [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G) [up arrowhead symbol] [italic capitals]E~G. The last of these is the [italic capital]G-spectrum representing the generalized Tate homology and cohomology theories associated to [italic]k[subscript italic capital]G. Here [italic capital]F([italic capitals]EG+,[italic]k*[over][subscript italic capital]G) is the function space spectrum. The authors develop the properties of these theories, illustrating the manner in which they generalize the classical Tate-Swan theories.

Bu e-kitobni baholang

Fikringizni bildiring.

Qayerda o‘qiladi

Smartfonlar va planshetlar
Android va iPad/iPhone uchun mo‘ljallangan Google Play Kitoblar ilovasini o‘rnating. U hisobingiz bilan avtomatik tazrda sinxronlanadi va hatto oflayn rejimda ham kitob o‘qish imkonini beradi.
Noutbuklar va kompyuterlar
Google Play orqali sotib olingan audiokitoblarni brauzer yordamida tinglash mumkin.
Kitob o‘qish uchun mo‘ljallangan qurilmalar
Kitoblarni Kobo e-riderlar kabi e-siyoh qurilmalarida oʻqish uchun faylni yuklab olish va qurilmaga koʻchirish kerak. Fayllarni e-riderlarga koʻchirish haqida batafsil axborotni Yordam markazidan olishingiz mumkin.