Galois Theory: Edition 5

· CRC Press
Carte electronică
371
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Since 1973, Galois theory has been educating undergraduate students on Galois groups and classical Galois theory. In Galois Theory, Fifth Edition, mathematician and popular science author Ian Stewart updates this well-established textbook for today’s algebra students.

New to the Fifth Edition

  • Reorganised and revised Chapters 7 and 13
  • New exercises and examples
  • Expanded, updated references
  • Further historical material on figures besides Galois: Omar Khayyam, Vandermonde, Ruffini, and Abel
  • A new final chapter discussing other directions in which Galois theory has developed: the inverse Galois problem, differential Galois theory, and a (very) brief introduction to p-adic Galois representations

This bestseller continues to deliver a rigorous, yet engaging, treatment of the subject while keeping pace with current educational requirements. More than 200 exercises and a wealth of historical notes augment the proofs, formulas, and theorems.

Despre autor

Ian Stewart is an emeritus professor of mathematics at the University of Warwick and a fellow of the Royal Society. Dr. Stewart has been a recipient of many honors, including the Royal Society’s Faraday Medal, the IMA Gold Medal, the AAAS Public Understanding of Science and Technology Award, and the LMS/IMA Zeeman Medal. He has published more than 210 scientific papers and numerous books, including several bestsellers co-authored with Terry Pratchett and Jack Cohen that combine fantasy with nonfiction.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.