Galois Theory: Edition 5

· CRC Press
E-bok
371
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Since 1973, Galois theory has been educating undergraduate students on Galois groups and classical Galois theory. In Galois Theory, Fifth Edition, mathematician and popular science author Ian Stewart updates this well-established textbook for today’s algebra students.

New to the Fifth Edition

  • Reorganised and revised Chapters 7 and 13
  • New exercises and examples
  • Expanded, updated references
  • Further historical material on figures besides Galois: Omar Khayyam, Vandermonde, Ruffini, and Abel
  • A new final chapter discussing other directions in which Galois theory has developed: the inverse Galois problem, differential Galois theory, and a (very) brief introduction to p-adic Galois representations

This bestseller continues to deliver a rigorous, yet engaging, treatment of the subject while keeping pace with current educational requirements. More than 200 exercises and a wealth of historical notes augment the proofs, formulas, and theorems.

Om forfatteren

Ian Stewart is an emeritus professor of mathematics at the University of Warwick and a fellow of the Royal Society. Dr. Stewart has been a recipient of many honors, including the Royal Society’s Faraday Medal, the IMA Gold Medal, the AAAS Public Understanding of Science and Technology Award, and the LMS/IMA Zeeman Medal. He has published more than 210 scientific papers and numerous books, including several bestsellers co-authored with Terry Pratchett and Jack Cohen that combine fantasy with nonfiction.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.