Galois Cohomology

· Springer Science & Business Media
4,0
2 recensioner
E-bok
212
Sidor
Betyg och recensioner verifieras inte  Läs mer

Om den här e-boken

This volume is an English translation of "Cohomologie Galoisienne" . The original edition (Springer LN5, 1964) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier's text on the duality of profinite groups. The most important addition is the photographic reproduction of R. Steinberg's "Regular elements of semisimple algebraic groups", Publ. Math. LH.E.S., 1965. I am very grateful to him, and to LH.E.S., for having authorized this reproduction. Other additions include: - A proof of the Golod-Shafarevich inequality (Chap. I, App. 2). - The "resume de cours" of my 1991-1992 lectures at the College de France on Galois cohomology of k(T) (Chap. II, App.). - The "resume de cours" of my 1990-1991 lectures at the College de France on Galois cohomology of semisimple groups, and its relation with abelian cohomology, especially in dimension 3 (Chap. III, App. 2). The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added. In order to facilitate references, the numbering of propositions, lemmas and theorems has been kept as in the original 1964 text. Jean-Pierre Serre Harvard, Fall 1996 Table of Contents Foreword ........................................................ V Chapter I. Cohomology of profinite groups §1. Profinite groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . .

Betyg och recensioner

4,0
2 recensioner

Betygsätt e-boken

Berätta vad du tycker.

Läsinformation

Smartphones och surfplattor
Installera appen Google Play Böcker för Android och iPad/iPhone. Appen synkroniseras automatiskt med ditt konto så att du kan läsa online eller offline var du än befinner dig.
Laptops och stationära datorer
Du kan lyssna på ljudböcker som du har köpt på Google Play via webbläsaren på datorn.
Läsplattor och andra enheter
Om du vill läsa boken på enheter med e-bläck, till exempel Kobo-läsplattor, måste du ladda ned en fil och överföra den till enheten. Följ anvisningarna i hjälpcentret om du vill överföra filerna till en kompatibel läsplatta.