assigning a degree of importance to each of the problem parameters. We further develop FP-CNSES by establishing the concept of weighted fuzzy parameterized complex neutrosophic soft expert set (WFP-CNSES) based on the idea that each expert has a relative weight. These new mathematical frameworks reduce the chance of unfairness in the decision making process. Some essential operations with their properties and relevant laws related to the notion of FP-CNSES are defined and verified. The notation of mapping on fuzzy parameterized complex neutrosophic soft expert classes is defined and some properties of fuzzy parameterized complex neutrosophic soft expert images and inverse images was investigated. FP-CNSES is used to put forth an algorithm on decision-making by converting it from complex state to real state and subsequently provided the detailed decision steps.Then, we provide the comparison of FP-CNSES to the current methods to show the ascendancy of our proposed method.