Fractional Partial Differential Equations

· World Scientific
E-book
320
Pages
Éligible
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts.The content in this monograph is based on the research works carried out by the author and other excellent experts during the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.