Fractional Brownian Motion: Approximations and Projections

· John Wiley & Sons
3.0
1 件のレビュー
電子書籍
288
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

This monograph studies the relationships between fractional Brownian motion (fBm) and other processes of more simple form. In particular, this book solves the problem of the projection of fBm onto the space of Gaussian martingales that can be represented as Wiener integrals with respect to a Wiener process. It is proved that there exists a unique martingale closest to fBm in the uniform integral norm. Numerical results concerning the approximation problem are given. The upper bounds of distances from fBm to the different subspaces of Gaussian martingales are evaluated and the numerical calculations are involved. The approximations of fBm by a uniformly convergent series of Lebesgue integrals, semimartingales and absolutely continuous processes are presented.

As auxiliary but interesting results, the bounds from below and from above for the coefficient appearing in the representation of fBm via the Wiener process are established and some new inequalities for Gamma functions, and even for trigonometric functions, are obtained.

評価とレビュー

3.0
1 件のレビュー

著者について

Oksana Banna is Assistant Professor at the Department of Economic Cybernetics at Taras Shevchenko National University of Kyiv (KNU) in Ukraine.

Yuliya Mishura is Full Professor and Head of the Department of Probability, Statistics and Actuarial Mathematics at KNU.

Kostiantyn Ralchenko is Associate Professor at the Department of Probability, Statistics and Actuarial Mathematics at KNU.

Sergiy Shklyar is Senior Researcher at the Department of Probability, Statistics and Actuarial Mathematics at KNU.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。