Fractional Brownian Motion: Approximations and Projections

· John Wiley & Sons
3,0
1 recenze
E‑kniha
288
Stránky
Hodnocení a recenze nejsou ověřeny  Další informace

Podrobnosti o e‑knize

This monograph studies the relationships between fractional Brownian motion (fBm) and other processes of more simple form. In particular, this book solves the problem of the projection of fBm onto the space of Gaussian martingales that can be represented as Wiener integrals with respect to a Wiener process. It is proved that there exists a unique martingale closest to fBm in the uniform integral norm. Numerical results concerning the approximation problem are given. The upper bounds of distances from fBm to the different subspaces of Gaussian martingales are evaluated and the numerical calculations are involved. The approximations of fBm by a uniformly convergent series of Lebesgue integrals, semimartingales and absolutely continuous processes are presented.

As auxiliary but interesting results, the bounds from below and from above for the coefficient appearing in the representation of fBm via the Wiener process are established and some new inequalities for Gamma functions, and even for trigonometric functions, are obtained.

Hodnocení a recenze

3,0
1 recenze

O autorovi

Oksana Banna is Assistant Professor at the Department of Economic Cybernetics at Taras Shevchenko National University of Kyiv (KNU) in Ukraine.

Yuliya Mishura is Full Professor and Head of the Department of Probability, Statistics and Actuarial Mathematics at KNU.

Kostiantyn Ralchenko is Associate Professor at the Department of Probability, Statistics and Actuarial Mathematics at KNU.

Sergiy Shklyar is Senior Researcher at the Department of Probability, Statistics and Actuarial Mathematics at KNU.

Ohodnotit e‑knihu

Sdělte nám, co si myslíte.

Informace o čtení

Telefony a tablety
Nainstalujte si aplikaci Knihy Google Play pro AndroidiPad/iPhone. Aplikace se automaticky synchronizuje s vaším účtem a umožní vám číst v režimu online nebo offline, ať jste kdekoliv.
Notebooky a počítače
Audioknihy zakoupené na Google Play můžete poslouchat pomocí webového prohlížeče v počítači.
Čtečky a další zařízení
Pokud chcete číst knihy ve čtečkách elektronických knih, jako např. Kobo, je třeba soubor stáhnout a přenést do zařízení. Při přenášení souborů do podporovaných čteček elektronických knih postupujte podle podrobných pokynů v centru nápovědy.