Fourier Analysis in Convex Geometry

· Mathematical Surveys and Monographs 第 116 冊 · American Mathematical Soc.
電子書
170
頁數
評分和評論未經驗證 瞭解詳情

關於這本電子書

The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems.

One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the  -dimensional volume of hyperplane sections of the  -dimensional unit cube (it is      for each  ). Another is the Busemann-Petty problem: if   and   are two convex origin-symmetric  -dimensional bodies and the  -dimensional volume of each central hyperplane section of   is less than the  -dimensional volume of the corresponding section of  , is it true that the  -dimensional volume of   is less than the volume of  ? (The answer is positive for   and negative for  .)

The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

關於作者

Alexander Koldobsky, University of Missouri, Columbia, MO, USA.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。